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When a small air bubble bursts from an equilibrium position at an air/water interface, 
a complex motion ensues resulting in the production of a high-speed liquid jet. This 
free-surface motion following the burst is modelled numerically using a boundary 
integral method. Jet formation and liquid entrainment rates from jet breakup into 
drops are calculated and compared with existing experimental evidence. In order to 
investigate viscous effects, a boundary layer is included in the calculations by 
employing a time-stepping technique which allows the boundary mesh to remain 
orthogonal to the surface. This allows an approximation of the vorticity development 
in the region of boundary-layer separation during jet formation. Calculated values of 
pressure and energy dissipation rates in the fluid indicate a violent motion, particularly 
for smaller bubbles. This has important implications for the biological industry where 
animal cells in bioreactors have been found to be killed by the presence of small 
bubbles. 

1. Background 
1 . 1 .  Introduction 

When a bubble bursts at a free surface, the surface tension rapidly pulls the rim where 
they intersect outward and downward. Eventually, a ring of fluid at the base of what 
was the bubble contracts to a point, throwing a plume of fluid upward in the form of 
a high-speed jet. The jet will often break up into a number of drops. The corresponding 
downward jet may be expected to advect vorticity from the separated boundary layer 
into the region beneath the bubble. Various aspects of this motion have been studied 
experimentally by a number of researchers - Kientzler et al. (1954), Newitt, 
Dombrowski & Knelman (1954), Garner, Ellis & Lacey (1954) and MacIntyre (1972). 
A numerical model based on an inviscid boundary integral scheme is used in this paper 
to model these bursting processes. Viscous effects are included in an attempt to model 
the boundary layer and subsequently the distribution of vorticity in the downward jet 
region. 

1.2. Motivation for the study 
Cells, cultivated in a bioreactor (figure l), have been shown to be damaged by gas 
bubbles used to aerate the culture medium. Corresponding cell death rates are greatest 
(Handa 1986; Handa, Emery & Spier 1987) for many small bubbles rather than a few 
large ones. The fact that a significant proportion of cell damage occurs in a region near 
to the reactor free surface has been indicated by a number of experimenters (Kioukia 
1990; Kunas & Papoutsakis 1990). It is also interesting to note that the ability of the 
reactor to produce a stable, slowly draining foam, when certain surface active 
chemicals are present, in particular Pluronic-F68 (a co-polymer of propylene oxide; 
produced by BASF, UK), greatly reduces the tendency for bubbles to damage cells. 
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FIGURE 1. Components of a bioreactor, with the air sparger placed beneath the agitator. 

Conversely, it has been demonstrated (Oh et al. 1989) that with purely surface aeration, 
cell death rates are largely independent of the agitation intensity used to evenly 
distribute nutrients through the reactor medium. All of this points to the possibility 
that bubble/free-surface interactions are somehow detrimental to cells. 

The role of bubble interactions with the agitator impeller blade is another possible 
cause of damage. Recent experiments by Oh et al. (1992) suggest that cell damage is 
increased by positioning the air sparger beneath the impeller. The effects of this are 
however two-fold : it will increase the number of bubble/impeller interactions and it 
will also split large bubbles into smaller ones which are known to be more lethal at the 
free surface. 

The bursting of bubbles at the free surface has become a prime suspect in the search 
for the cell damage mechanism, but it is apparent that there is no complete agreement 
as to the precise cause. In this paper, we seek to study physical aspects of the bursting 
of a bubble at a free surface as a contribution to this vital aspect of improving aeration 
in bioreactors to an extent where they become economically viable. 

1.3. Film rupture 
There is a substantial body of literature relating to films, and film drainage. The 
assumptions that must be made when dealing with thin films are completely different 
from those used below for a bubble in a high Reynolds number flow. Here, viscosity 
plays an important role in determining the drainage and stability properties of 
lamellae. There are three main reasons for film stability (see for example Bikerman 
1973) : surface viscosity, the Marangoni effect, and to a lesser extent electrostatic 
repulsion forces. In opposition to these electrostatic forces there are London-van der 
Waals forces that tend to pull the two sides of the film together, thus increasing the 
tendency to rupture. However the last two of these forces act over a very short range 
(of the order of 100 nm) and thus only have effect in the latter stages of thinning. Early 
on, while the film is thicker, there are two main mechanisms for drainage. Obviously, 
one is gravity. The second is due to Plateau borders (see Bikerman 1973). These are 
regions of high surface curvature, particularly in foams, causing low pressures at the 
‘corners’ of a bubble. This mechanism is not so important when applied to a single 
bubble, where the curvature is almost constant before it bursts. 

A film is said to be unstable (Scheludko 1962) if there is some critical thickness at 
which small perturbations on the surface will grow causing a hole to appear which, 
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provided that it is big enough (Taylor & Michael 1973), then expands due to surface 
tension, thus rupturing the film. 

With respect to bubbles approaching a free surface, experimental and theoretical 
aspects are considered in a number of papers. Allan, Charles & Mason (1961) 
measured the thickness of the film above a bubble. They found that the thinnest part 
of the film moves out from the centre to a circular rim. The radius of this rim, c, which 
remained almost constant, was found to agree well with the expression c = (E0/6)!, 
where Eo is the Eotvos number which is based on a balance of surface tension and 
buoyancy forces. The thinning rates found match theoretical estimates based on a pair 
of parallel disks or on the film between a rigid sphere and a free surface. They also 
observed that the presence of surfactants markedly reduced the thinning rates. 

The effect of the approach speed of a bubble towards a free surface was investigated 
by Kirkpatrick & Lockett (1974). They found that for larger velocities (above about 
1 cm/s for 2.5 mm radius bubbles in water) the thinning process does not have time to 
complete before the bubble is decelerated to rest by surface tension, which may then 
push it back into the fluid. In contrast, a bubble that is released just below the surface 
and so does not have time to accelerate to its terminal velocity is found to burst almost 
immediately, without bouncing. A simple mathematical model, based on the fact that 
the rate of thinning is inversely related to the area of the film was developed, leading 
to the same general conclusion. Minor impurities in the water were found to be 
insignificant, but with a larger amount of surfactant ( 0 . 6 ~  sodium chloride) the 
coalescence times became longer, with little difference between small and large 
approach velocities. 

Hahn, Chen & Slattery (1985) used a lubrication theory approximation including the 
effects of London-van der Waals forces to model the draining of a film above a bubble. 
In this way they were able to obtain estimates for the rupture time, taken as the time 
for the rim thickness to become zero. However, they mentioned that the geometry used, 
which prevents any asymmetric instabilities, and the assumption that there is no 
tangential motion on the surfaces due to the presence of surfactants, means that the 
model gives only an upper bound for the rupture time. The effect of electrostatic 
repulsion was also neglected. 

1.4. Previous studies of bursting bubbles 
One of the earliest investigations of film rupturing was by Lord Rayleigh (189 I), who 
applied high-speed photography to view the bursting of soap films. More up-to-date 
photographic studies have also been undertaken. Kientzler et al. (1954) show pictures 
of the breakup of the high-speed liquid jet that follows bubble burst. Newitt et al. 
(1954) showed that there are two types of drop released after the burst: large ones 
emanating from the jet mentioned above, but also smaller ones from the liquid film 
above the bubble. This thin lamella breaks up into a number of tiny droplets which are 
projected sideways by the expansion of the bursting film and upwards by the rush of 
gas as the pressure in the bubble is released. 

In a more comprehensive study, MacIntyre (1972) showed that the film, as it breaks, 
‘rolls-up’ into an expanding toroidal rim. This rim may break irregularly into a 
number of tiny droplets. He mentions that this rim of the film is expanding too rapidly 
to be broken up by capillary ripples, as in the case of the jet. Instead, this breakup is 
due to turbulence from the escaping air coupled with the effects of variations of surface 
tension and film thickness. After bubble burst, what remains of the toroidal rim follows 
a ripple down the sides of the bubble. By using dyes in the fluid, it was shown that the 
liquid in the jet originates in a thin layer surrounding the bubble crater. Very little 
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mixing of the dye with surrounding fluid during jet formation indicated to MacIntyre 
that the flow at the base of the jet is irrotational. MacIntyre was also able to observe 
the corresponding downward jet of fluid that must occur on grounds of momentum 
conservation. 

Evidence relating to the origin of the material in the jet is significant in the study of 
cell damage by bubbles, since it has been reported by Blanchard & Syzdek (1972) that 
bacteria tend to become adsorbed onto bubble surfaces. Similar results have been 
found for insect cells by Bavarian, Fan & Chalmers (1991). This was followed up by 
Chalmers & Bavarian (1991) who claimed that the hydrodynamic forces due to the 
shear in the boundary layer around the walls of the bubble cavity are sufficiently large 
to kill cells. They also postulated a second mechanism based on the small length of fluid 
that is accelerating as the bubble bursts (Culick 1960), that is that cells may be struck 
by the toroidal rim as they sit on a stationary part of the bursting lamella. 

1.5. Aims 
The primary aim of this study is to produce a numerical model of a bursting bubble, 
which agrees with the experimental results indicated above. In particular, the model 
should predict the high-speed liquid jet, together with the corresponding downward jet. 
Calculations can then be made as to the stresses imposed on a particle in the vicinity 
of the bursting bubble. The effects of viscosity, leading to a boundary layer and high 
shear rates, are also of interest as they may further increase the damaging potential of 
the bubble. An estimate of the contribution to the stress from vorticity in the region 
of the downward jet is sought. Such information may provide useful evidence for or 
against particular proposed cell damage mechanisms. 

This paper does not address a numerical study of the film rupturing process itself, 
nor does it discuss further the stresses imposed on a particle resting on the film as it 
breaks: this will be left for the future. It is, however, important to consider the initial 
height of the bubble in the liquid in order to obtain a realistic figure for the energy 
released when it bursts. 

2. Problem statement 
2.1. Inuiscid formulation 

The photographic evidence of Kientzler et al. (1954) indicates that Reynolds numbers 
for a bubble bursting, from the time just after film rupture to the rise of the jet, are of 
the order of 1000. We may therefore assume that, up until the formation of the jet, any 
vorticity is limited to thin boundary layers around the air/water interfaces, so that the 
velocity distribution may be reasonably represented by potential flow, u = Vq. The 
corresponding Reynolds numbers for bubbles rising under gravity are also large - of 
the order of 700 for bubbles as small as 0.1 cm radius moving at terminal velocity (see 
Levich 1962 or Clift, Grace & Weber 1978). We therefore assume that the inviscid 
model is also relevant for bubble rise. Since the density of the atmosphere and the gas 
contained in the bubbles is small compared with that of the liquid, atmospheric 
pressure and the gas pressures within each of the bubbles is assumed uniform. The 
relative volume change for a bubble containing an ideal gas at fixed temperature is 

If patm is atmospheric pressure and we assume that the total translation of the bubble, 
Az, is only a few bubble radii, then pgAz/p,,, 4 1 and we may assume that the bubble 
volumes remain constant. 
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FIGURE 2. The initial position of bubbles C, and C, below the free surface, C,,. In most calculations 
presented, the free surface is not flat as depicted, but takes the shape of a bubble for which the film 
cap has just ruptured, together with a meniscus extending to infinity (see figure 3). 

Although in the calculations shown below there is at most one bubble rising near a 
free surface together with one bubble in the process of bursting, it is more convenient 
to formulate the axisymmetric problem for M bubbles below a free surface. The 
solution domain, 8- (see figure 2), is defined to be the semi-infinite region bounded 
above by the free surface, C,, and internally by each of the bubbles C,, (m = 1, . . . , M ) .  
The free surface coincides with the (x,y)-plane at infinity. Normals are taken as 
pointing outwards from SZ-, into the gaseous phase. 

Initially, bubbles are spherical with non-dimensional radii rm, lengths being scaled 
with respect to the radius of bubble 1, which we denote by a. Bubble m is situated on 
the z-axis at a distance ym(> 0) below C,. We further scale times with respect to 
@a3/a>’ and pressures by the factor a / a ,  Q being the surface tension. 

The code allows either bubbles to rise up to an initially flat free surface and burst as 
they reach it, or that a bubble will have just burst at t = 0-, when the calculation is 
started. The latter option allows us to include more physical reality into the problem 
without worrying too much about surface drainage. The method for finding the initial 
surface shape in this case is discussed in 42.2. 

In order to develop a numerical scheme for the associated moving boundary 
problem, two conditions are required at each boundary. The dynamic boundary 
condition, expressing the time dependence of the velocity field through the potential, 
comes from a consideration of the Bernoulli equation, 

p ,  = p +; IUl2 +--+@ 84 z, at 

evaluated at the interfaces. In (2.2), p m  is the fluid pressure at infinity, just below the 
free surface. The Eotvos number, Eo = 4pgu2/a, enters as a result of the pressure 
scaling (ala).  It measures the bubble size and represents the square of the ratio of the 
timescale associated with the collapse, due to surface tension, of a spherical cavity 
whose contents remain fixed at the ambient pressure of the fluid and the timescale 
associated with the rise of a bubble due to gravity. During bubble burst, this parameter 
therefore measures the relative importance of bubble rise and bubble collapse. For the 
smallest bubbles, the effect of buoyancy will clearly be secondary to surface tension 
forces. 

If viscous stresses in the thin boundary layers are ignored, a pressure balance may 
be used across each interface. The pressure just outside the surface C, (m = 0,. . . , M )  
is given by 

15 FLM 254 
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where K is twice the mean curvature. Here, p,(t) (m = 1,. . . , M )  is the pressure inside 
the mth bubble and po(t)  = pat ,  is the constant atmospheric pressure, which is also 
equal to p ,  from (2.2) since the free surface is assumed flat at infinity. 

Combining (2.2) and (2.3) evaluated at a general time and initially, and employing 
the substantial derivative in the form 

gives an equation for the time evolution of the potential on C,, 

In (2.5), K,( = 2/r,)  is the initial curvature for bubble m. Note that K~ and yo are taken 
to be zero. 

In order to eliminate the unknown pressure terms in (2.5) we introduce, in a similar 
manner to Lundgren & Mansour (1991), modified surface potentials defined by 

flc, = 4Lm + km, (2.6) 

where k,(t) = 1 (pm(tr) -p,(O)) dt’, m = 0,. . . , M ,  
0 

and we work with f rather than 4. With this definition, the dynamic condition (2.5) 
becomes 

= ~l~1~-~Eb(z+y,)+~-~,,  m = o ,..., M .  

Writing the dynamic boundary condition (2.8) in terms of the initial bubble depth and 
curvature, rather than including these constants in the unknown k,, ensures that 
changes off for each bubble will be initially centred on zero, thus reducing round-off 
errors, especially for deeply submerged or very small bubbles. 

The surface C, is represented parametrically by the function qm(s, 8, t)  (0 < s < l,, 
m = 0,. .. , M )  where s is an arclength parameter and 0 is an azimuthal angle. For 
bubbles, 1, is the total arclength around B,, the intersection of C ,  with the half-plane 
8 = 0, and Z, = co. The kinematic condition expresses the assumption that there is no 
mass transfer across interfaces, and thus a particle that lies on a surface will remain 
there and move with its local velocity, namely 

a 4 m  -(s, 8, t )  = V$(q,(s, 8, t), t) ,  m = 0,. . . , M .  
at (2-9) 

To keep the bubble volumes constant, constraint equations in the form of the line 

(2.10) 

integrals 

g r ( s ) c i s  = 0, m = 1, ..., M 
JBm 

are used, where r(s) is the distance of a point from the axis of symmetry. 

2.2. Bursting the bubbles 
Certain questions have to be addressed in order to produce a good model of the 
bursting process. As the film above the bubble will be very thin when it ruptures, 
between about 10 nm at its thinnest parts (Vrij 1966) and a few microns elsewhere, we 
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assume for the purposes of this paper that the film itself will have no significant effect 
on the subsequent motion. The rupture of the film may have dire consequences for cells 
adsorbed onto the upper surface of the bubble, but this is neglected in this 
investigation. 

If we can ignore the film, then when a bubble is ‘burst’ numerically, a decision still 
has to be made as to the amount of film above the bubble to remove before 
reconnecting the bubble cavity to the free surface. This will invariably be greater than 
the total amount of fluid in an actual film because of the difficulty in calculating the 
bubble and surface motion with the bubble much closer to the surface than the length 
of a single boundary integral element (see 9 3). However, numerical experimentation 
has shown that, provided not too much fluid above the bubble is thrown away, this has 
little effect on the subsequent bursting motion. It would, in any case, be inappropriate 
to assume that the irrotational model could accurately predict the fluid flow in the film 
itself when it becomes even moderately thin: the thinning rate would be too rapid. In 
the case where surfactants are present various physico-chemical phenomena such as 
surface viscosity may become important so that even stress-free interfacial boundary 
conditions become invalid. It is thus hard to see how the rupture time can be 
determined based on the calculated thickness of the film other than by matching a 
modified lubrication layer for the film on to the inviscid model. The rupture-time 
calculations of Hahn et al. (1985) are likewise difficult to implement, firstly because 
they are inaccurate, as indicated in 0 1.3, but also because of the problem of identifying 
with any certainty their initial time, when the draining rate of the film above the bubble 
is independent of radial position. It is suggested, however, that this time will be close 
to the time that the bubble comes to rest at the surface. 

It seems clear that one of the most important factors determining the motion 
following film rupture, in terms of the energy released, is the height of the top of the 
bubble above the equilibrium free-surface position. The experimental study of 
Kirkpatrick & Lockett (1974) indicates that bubbles moving at speeds approaching 
terminal velocity, upon reaching the free surface tend to come to rest and bounce a 
couple of times before bursting. It has also been observed (see for example Newitt 
et al. 1954 or Allan et al. 1961) that a bubble may rest for a short time at the free surface 
before bursting. In any case, we assume that the thinning of the film and the 
instabilities which eventually rupture it when it reaches a critical thickness are to some 
extent asynchronous with the bouncing of the bubble and that, on average, a bubble 
will burst at its static equilibrium position when the buoyancy force is equal to the 
downward component of surface tension. For a spherical bubble in a pure liquid, the 
non-dimensional height above the surface of the top of the bubble would be 
approximately 

(2.11) 

This is equivalent to the formula given by Allan et al. (1961) for the radius of the rim 
of intersection of the free surface and the bubble, in terms of the bubble radius. Here, 
we use a pressure balance to find the equilibrium bubble and meniscus shapes, 
employing (2.11) as a first approximation. If ut< are the surface tensions of the 
interfaces ( i , j )  (see figure 3) then force balances in the r- and z-directions give us 
respectively 

(2.12) 

and uI3 sin Bc = g12 sin 9, + uZ3 sin pe, (2.13) 
where K is the line tension from the intersection of the three interfaces. A subscript c 
denotes evaluation at this contact line. In general, the value of K depends on the 

h = 1 - (1 - E0/6)? 

u13 cos Bc = u12 cos #c + gZ3 cos $c - K/rc 

15-2 
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FIGURE 3. Schematic diagram of a bubble at a free surface in the initial static equilibrium position 
just prior to film rupture. 

geometric configuration of the interfaces as well as the physical properties of the fluids 
(see Ivanov, Kralchevsky & Nikolov 1986). 

It is convenient at this point to follow Ivanov et al. (1986) and rescale lengths with 
respect to the mean radius of curvature, b, of the lowest point of the bubble. 
Correspondingly scaled quantities will be indicated by an overbar. We also introduce 
the quantity /3 = pgb2//a (similar to the Eotvos number Eo), where c = /al2 = /aa3. If we 
write 7 = /a13//a and K = K/ba,  the experimental evidence of Ivanov et al. (1986) 
suggests that 

1~-21< 1 and 14 4 1. (2.14) 

As angles Be, $c and $c must be acute, (2.12) and (2.13) give approximate solutions 

Let (R,  Z) be the rectangular coordinates of a point in a half-plane containing the 
axis of symmetry, centred on the lowest point of the bubble crater. A simple 
consideration of the pressure jump across the interface (1,2) shows that the shape of 
the bubble cavity is described by the differential system 

8, = %$,+_11.,> and = $0 namely 0, = = @,. 

(2.15) dR - Rcos $ 
&J- (2+pZ)R-sin$' 

dR 
- = -tan$-, d Z  
d$ d4 

with boundary conditions 
R = Z = o  at $ = x .  

(2.16) 

(2.17) 

We denote the values of R and Z at $ = $, by Zc and Rc respectively. 

second-order equation 

with the two-point boundary conditions 

Similarly, the meniscus (interface (2.3)) has shape F = h(6 which is governed by the 

h'" = (-F/r+ph(l+F2);)(1 +R2),  (2.18) 

F(Rc) = -tan $c and h(w) = 0. (2.19) 

Asymptotic solutions for both the bubble cavity and meniscus shapes exist for small 
values of ,8 and R, respectively (see Ivanov et al. 1986 and Lo 1983). However, for 
larger bubbles these expressions are less accurate and so a numerical solution is used 
here. 

The system given by (2.18) and (2.19) can be solved using a technique similar to that 
of Princen (1963), by choosing a value for 5, = fi(Rc) and performing a simple bisection 
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search depending on whether the solution tends to infinity or dips below the z = 0 
plane. Since the meniscus meets the bubble at r = R,, we have that the bubble position 
in the fluid is given by 

z= Z(qj)+h,-Z,. (2.20) 
We further assume the film separating the bubble from the atmosphere to the very 

thin and thus gravity forces negligible compared to the effect of pressure so that the film 
may be taken to be spherical with radius C. Using this to equate the pressure in the 
bubble given by the jump across the spherical film with that given by the hydrostatic 
pressure at the bottom plus the corresponding jump due to surface tension there gives 

4/c = 2 + P(Z, - h,). (2.21) 
Since the dome is spherical, R, = rsin8, and (2.21) can be written as 

R,( 1 + $(Z, - 5,)) = 2 sin qjc .  (2.22) 
Equation (2.22) fixes the height of the bubble in the fluid, but we also need an 

equation to set the volume. The volume of the bubble with the new scalings is 

v = ;7c(E0/4/3):. (2.23) 
Note that the volume, 7, is calculated by adding the volume for the region of the 
bubble below the ring of intersection, F2, which can be found numerically, to the 
volume of the spherical dome with radius given by (2.21), thus 

- 

(2.24) 
The solution method is to firstly select an approximation for the unknown variables, 
q j ,  and P. These are given by the assumption that the bubble is almost spherical, of 
radius a with the top a non-dimensional height given by (2.11) above the free surface, 
so that 

Rp) = (E0/6)i, (2.25) 
thus 
and 

(2.26) 
(2.27) 

For this initial approximation, we must restrict Eo to be less than 6, which imposes a 
maximum on the bubble radius of about 0.34 cm. Newton iteration is then used to 
calculate the values of q j ,  and /3 subject to (2.22) and (2.23), with 7 given by (2.24). 

An alternative bursting mechanism which will work well only for small bubbles, but 
that illustrates the importance of a physically realistic bursting procedure for larger 
bubbles can be used for bubbles that have been followed numerically from a distance 
below the free surface. This is to simply burst the bubble when its uppermost nodes 
become closer to the free surface than some critical distance. Any points on the 
bursting bubble or free surface closer together than some other prescribed distance are 
removed. The remains of the bubble and free surface are then rejoined to form an 
indented free surface. We assume that the burst takes place in an instant, so that the 
potentials on the other parts of the bubble are unaffected. Note, however, that when 
the mth bubble bursts, the constant k ,  must be subtracted from the potentials on that 
bubble before reconnecting it to the free surface. To smooth the new surface slightly 
at the point of joining, a new node is added at the midpoint of the first nodes removed 
from the old surfaces, and the potential at this node is simply taken as the average of 
the potentials at the old two nodes. The calculation is then allowed to continue. This 
method of bursting can be anticipated to result in a significant overestimate of the 
energy release when a large bubble bursts, as shown below. 
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3. Solution by the boundary integral method 
The solution method relies on writing Laplace’s equation for the potential, $, in the 

form of an integral equation, which can be solved in a discrete form. Define the 
surfaces al2, the boundary of 52-, and C = C,(R) u c,(R) u C, U u C,, where 
Eo(R) is a spherical arc of radius R, centred at a point x* EQ-\aQ, and take C,(R) to 
be the finite portion of C, extending as far as co(R), in such a way that c,(R) u C,(R) 
encloses all of the C, (m = 1, ... , M ) .  If we now chose a point x on a52, we may use 
Green’s integral formula written in the form 

where 1 
4 ~ I x *  - x‘l 

G(x*,x’) = 

is the fundamental solution of the three-dimensional Laplace equation. As the fluid is 
at rest at infinity, we assert that $(x) + 0 as 1x1 + co and so for x’ E E,(R), dS = O(R2), 
q5 = 0(1/R) and a$/an = 0(1/R2) as R+ co. It is clear that the integral over co(R) 
(with the exception of the term in $(x) which approaches the value -;$(x)) behaves 
as 1 / R  and so vanishes when we take the limit R --f co. We also take the limit x* + x, 
which is trivially done, owing to the regularity of the integral. As the Cauchy principal 
value integral of the remaining term in $(x) is now zero, 

Finally, substituting f for q5 as in (2.6) and using the fact that k,(t) = 0, gives the 
expression 

;Ax) = k ,  +fa, (G(x, x’) a$ (x’) -f(x’) dS’, x E C,, m = 0, . . . , M .  

(3.4) 
(The same formula can be derived for the case when C, is absent from aQ, that is the 
bubbles reside in an infinite fluid.) 

The integral equation (3.4) is in a form suitable for use in the program described 
below which is a modified version of the code of Best & Kucera (1992), which was 
originally designed for cavitation and explosion bubbles in an infinite fluid. 

The boundary of the solution domain is now discretized. Nodes, denoted by the 
position vectors pmi where (i = 0,. . . , N ,  and m = 0,. . . , M ) ,  are distributed on the 
bounding arcs of the surfaces, B,. In the Cartesian half-plane 6 = 0 these nodes have 
the coordinates (rmi, z,J. 

For bubbles, nodes 0 and N, lie on the central axis at the bottom and top 
respectively. Initially, nodes are equally spaced by arclength on the bubbles, and on the 
free surface they are placed on the portion 0 < r < R,,, of B,, for some large R,,,, 
with the nonlinear distribtuion 

roi = - iRm@z (1 +( i -N, -  l)-’), i = 0, ... , No, 
2NO 

so that points are distributed more densely near the axis, where resolution is 
particularly important. Subsequently, R,,, is allowed to alter dynamically with the 
position of the end node on the free surface, namely Rmaz(t) = rON,. Similarly we define 
Z,,,(t) = zON, and F,,,(t) = f O N o .  In order to evaluate the integral over the infinite free 
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surface, an approximate expression is required for the quantities in the integrand of 
(3.4). The motion of a bursting bubble may be thought of as a superposition of 
harmonic modes of which the spherically symmetric mode, corresponding to the 
isotropic collapse of a cavity due to surface tension, may be represented by a potential 
sink. A consideration of the linearized boundary conditions for large r indicates that 
at z = 0, a2q5/at2 - -aq5/azz. This condition is not satisfied by the sink alone but is 
satisfied by an image system that falls off as rP3. The assumption of a dipolar far field 
is also consistent with the fully nonlinear boundary conditions and implies that the 
free-surface elevation is also of order r-3 for large r.  Thus for the purposes of the 
numerical computations, we assume for r > R,,, 

A similar asymptotic technique was used in the boundary integral method of Oguz & 
Prosperetti (1989), to calculate the motion of the contact line between a drop and a free 
surface. 

Cubic splines are used to interpolate the surface nodes. The end conditions, dictated 
by symmetry, are that az,/as = 0, af,/as = 0 on the axis. Since the spline for the free 
surface only reaches as far as r = R,,,, the conditions there are 

N K u x ( R m u x / r ) 3  and zo(r) - z m u z ( R m u x / r ) 3  as r +  (3-6) 

thus ensuring continuity of first derivative with the analytic portion of the free surface. 
The asymptotic form for the normal derivative of the potential 11, for large r, on the 

where Y,,, = $/oNp. 

The azimuthal integrations in (3.4) can be calculated analytically in terms of 
complete elliptic integrals (see for example Guerri, Lucca & Prosperetti 1981 or Taib 
1985). The arclength integrations are then evaluated using an appropriate Gauss 
quadrature scheme, to yield a system of linear algebraic equations for the unknown 
normal derivatives, $mt. Coupled with (3.4), the M equations of (2.10) allow 
calculation of the M constants, k,. 

4. Viscous effects 
4.1. Boundary-layer approximation 

As mentioned in 8 1, it has been proposed that a possible cause of cell damage is high 
shear stresses in the boundary layer of a bursting bubble. Independent calculations by 
J. J. Chalmers (1992, personal communication) suggest that the shear stresses occurring 
in the downward jet, particularly for small bubbles, may be large enough to cause cell 
damage. It is therefore of interest to calculate the vorticity development in the 
downward jet region. It is also important to gain information as to the effect of 
viscosity on the interface motion, particularly on the development of the jet where high 
rates of strain are expected. 

There have been a number of studies where weak viscous effects have been included 
in otherwise inviscid boundary integral formulations. Miksis, Vanden-Broek & Keller 
(1982) included a modified boundary condition in calculations of the steady-state 
shape of a rising bubble. Their modification took into account only the change in the 
normal stress at the surface due to viscosity, and ignored the pressure drop across the 
boundary layer itself which, as they noted, becomes particularly important on the 
lower part of the bubble. 
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This was taken a stage further by Lundgren & Mansour (1988), where an analysis 
of the boundary-layer equations resulted in expressions for the pressure difference 
and normal component of the velocity perturbation due to the viscous layer. For 
completeness, we given an indication of the method of Lundgren & Mansour and then 
describe a way in which this can be extended so that the tangential component of the 
boundary-layer velocity can be obtained. With this information it is possible to identify 
approximate initial conditions for the vorticity distribution as the jet is about to form 
and thus gain some understanding of the flow in the downward jet. 

Lundgren & Mansour's method (referred to as LM) is as follows. The velocity field 
is written in the form v = u+ U, where u = Vq5 is the usual potential flow field and 
U = V x A is the rotational flow. For uniqueness, A isAtaken to be zero outside the 
boundary layer. Since the flow is axisymmetric, A = A& Likewise, the total pressure 
may be written as p* = p + P ,  where P is the perturbation in pressure due to the 
boundary layer. The viscous boundary conditions are the usual ones for a free surface. 
Firstly, a balance of normal stress on either side of all interfaces is required: 

- p , ( t ) + ~  = -p*+2Re-lA.Vv-A, m = 0 ,..., M .  (4.1) 
Secondly, due to the relatively low dynamic viscosity of the air, there should be no 
tangential stress at the surfaces: 

t". v v .  A + A. v o .  i = 0. (4.2) 
Here, t" and A are the tangent and normal to the generator of the axisymmetric bubble. 
The Reynolds number, Re, is given by (aalpv'p)". 

On assuming that the bounday layer is thin, with thickness 6, and that the variation 
along a surface is of order unity, LM use the zero tangential stress condition (4.2) to 
make the approximation 

(4.3) 
which shows that U, = O(6) with A = O(#) and from mass conservation U ,  = O(6'). 
Here, subscripts n and t refer to normal and tangential components of a local 
curvilinear coordinate system fitted to the instantaneous interface shape. A 
consideration of the normal and tangential components of the Navier-Stokes equations 
shows that for viscous terms to be retained, the boundary-layer thickness must be 
related to the Reynolds number by 6 = Re-;. Upon neglecting variations of P along the 
boundary layer, LM are able to integrate the tangential equation across it and produce 
an equation for the development of A at the surface. Likewise the normal equation is 
integrated across the boundary layer to give an expression for P at a surface, in terms 
of A and the irrotational velocity, u. Before giving these expressions it is convenient, 
for brevity, to introduce the notation 

au,/an = - 2t"- vu - ii + O(a2), 

D{w}  h - ah -+ W-Vh. ~- 
~t - a t  (4.4) 

This is a generalization of the usual material derivative, where the rate of change of a 
function of the flow field is taken following points that move with a velocity w. This 
notation will prove useful when we consider the calculation of the tangential velocity 
due to the boundary layer, but is also appropriate here. The final boundary conditions 
found by LM give, in the context of the bubble bursting problem, 

D{u+ U,A}A 
Dt 
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where U, = (a(rA)/as)/r and K@) is the curvature of the interface in a plane through the 
axis of symmetry. Also 

+O(P). (4.6) 

The modification to the pressure is likewise given by 

P = 2At^.Vu*ii+O(P). (4.7) 
The model of LM is insufficient if we wish to go on to approximate the flow field after 
the boundary layer separates from the bubble cavity as the jet is about to form, since 
it does not include a scheme for calculating the total tangential velocities in the layer: 
the contribution to the tangential velocities is an order of magnitude higher than that 
for the normal velocities in the boundary layer. To do this, we solve a partial 
differential equation based on the tangential component of the boundary layer 
equation (LM's equation (4.18) with a total Lagrangian derivative), 

d ut a 2  u, -+ U,f.Vu.t^= Re-1-+0(62) ,  dt ana 

subject to the boundary conditions (4.3) at the surface and U,+O outside the thin 
boundary layer. 

Equation (4.8) can be solved using a finite-difference scheme, by fitting a grid of 
points to the boundary-layer region. If we wish to continue to use the model of LM and 
the boundary integral scheme, it is possible to use (4.8) as an equation for the 
Lagrangian evolution of particles moving through the fluid in the viscous layer. As the 
problem is inherently unsteady, these grid points will move in relation to one another 
and thus it will be difficult to keep track of which nodes are closest to each other for 
the purpose of calculating derivatives. (For a review of techniques for following closest 
nodes in such problems see for example Boris 1989.) Alternatively, a scheme could be 
devised whereby points are remeshed after each time step to keep them on a more 
convenient grid. However a technique is used here in which the need to reposition at 
each time step is removed, except when the usual repositioning of surface nodes is 
performed in the boundary integral scheme. The idea uses the fact that the bubble or 
free surface is a stress-free interface, and consequently a material line that is normal to 
a surface will remain, locally, orthogonal - see the Appendix. Since this orthogonality 
is only local to the point on the surface, we 'linearize' the Lagrangian time derivative 
by writing 

where 11 is the normal distance from a point to the surface and the subscript 0 denotes 
evaluation at the surface. It is clear from (4.9) that as q+O the approximate 
Lagrangian derivative - following points moving at velocities v* = vo - q(d. V U ) ~ ,  - 
becomes exact. Writing (4.8) in terms of this derivative gives us 

(4.10) 
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The virtue of this approach is that if we follow mesh points which move with velocities 
given by v*,  then as this is the exact Lagrangian derivative at the surface where the zero 
tangential stress condition (4.2) is applicable, the mesh lines normal to the surface will 
remain normal at the surface. The linearization further ensures that these lines remain 
straight since the transformation mapping the line to its new position a short time later 
is linear (as ii.Vv* = (#.Vv)l,). The advantages over more usual Lagrangian finite- 
difference schemes are that normal derivatives are always simple to evaluate; there is 
no need to store the position of the mesh points, only their distances from the surface; 
and, as mentioned above, there is no need to reposition the points other than 
occasionally as dictated by the underlying boundary integral scheme - see $4.2. 

The new term on the right-hand side of (4.10) as compared with (4.8) can be shown 
to be of order cY2 in the boundary layer. As we can assume that the potential flow field 
changes slowly in the boundary layer we can view the potential flow part of u* as the 
error in the Taylor expansion of u, and so if 7 = 0(6), 

( v -  u, +r] (A.  VU)lo) * vu, = ( U -  u, + ?)(ii. VU)I,). vut + O(S2). (4.1 1) 

Splitting the remaining velocities into their normal and tangential components shows 
the first two terms to be of order S2, leaving 

(4.12) 

This is of order 78, which is of order 6' in the boundary layer. Knowing U, to order 
6 is consistent with calculating A to order 6' since U, x aA/an. 

The second term on the right-hand side of (4.10) can also be approximated. 
Expanding in a Taylor series, 

i . v u .  i =  (i.Vu.fA)IO-T[ii.V(i.VU. 1")]1,+0(r]". (4.13) 

Since this term is multiplied by U,, the first-order correction in (4.13) may be ignored 
in the boundary layer. The final form of (4.10) is thus 

(4.14) 

Derivatives of U, are calculated by fitting quadratics to nodal values along a normal 
to the surface, with the value on the surface given by (4.3) and U, assumed zero outside 
the boundary layer. This is then repeated to give the second derivatives. 

The rate of change of the distance between the surface node and a corresponding 
mesh node on the normal to the surface is given by the difference in normal velocity 
between the surface and the mesh point. Thus if we now view r ]  as a parametrization 
of a mesh normal to a surface with the linearized time derivative we see that 

aq/at = q(ii. vv)l,. ii. (4.15) 

Writing the continuity equation for the potential flow in terms of normal and 
tangential derivatives gives 

so that (4.15) may be written as 

(4.16) 

(4.17) 
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Note that as the linearized derivative matches with the total derivative at the boundary, 
the evolution of A and of q5 can be approximated by using (4.5) and (4.6), however (4.6) 
first needs modifying to take account of the tangential component of the derivative by 
adding a term U, t"eVq5 to both sides. This order-6 term simply corrects for the 
additional tangential motion without otherwise affecting the potential distribution on 
the surface. We write (4.6) as 

We assume that the fluid starts off stationary so that all perturbation quantities due 
to the boundary layer are initially zero. For the case of a bubble bursting we are thus 
neglecting any vorticity that would have been created in the boundary layer as the 
bubble rose to the surface. 

Certain limiting cases as Y + 0 need to be calculated. By symmetry, u,, &/as and 
azu,/as2 all vanish on the axis. From this it follows that u -  f / r +  t̂ - Vu- t" as r -f 0. Also, 
for motions starting in a perfect state of rest, A = 0 on the axis initially, and so (4.5) 
will ensure that A remains zero there throughout the motion. 

Moore (1963) calculated expressions for the boundary layer on a spherical bubble 
moving through a liquid. He found the boundary-layer approximation to be invalid in 
a region of width d near to the rear of the bubble, owing to separation. Vorticity in 
this region is confined to a layer of thickness d, and viscous forces are no longer as 
important as inertial forces. Closer still to the axis of symmetry, the layer thickens 
further to form a wake, where stream surfaces are eventually cylindrical and parallel 
to the axis. The wake region has width d so that again diffusive viscous effects are 
negligible, with the movement of vorticity being dominated by advection. We shall 
assume that a similar thin wake structure also exists in the case of a non-spherical rising 
bubble or for a bursting bubble until the jet forms. Jet formation will cause vorticity 
from a larger region near the underside of the bubble cavity to be advected into the 
downward jet. From a modelling viewpoint we can correct for this thin wake to a 
certain extent, provided that the spacing between nodes is not too small, by using an 
appropriate expression for the perturbation to the normal velocity at the node on the 
axis beneath the bubble. This normal velocity only directly affects adjacent nodes 
through the arclength derivatives taken on a cubic spline for A .  Indeed, the radial 
derivative of A which is, apart from a factor of 2, precisely the normal velocity at the 
end node, is required here in order to fit the cubic spline to A .  In order to calculate U,, 
here, we can use the vertical component of the Navier-Stokes equations. Moore's 
estimates indicate that inertial terms dominate both viscous and pressure gradient 
terms, so that we may write 

(4.19) 

on using (4.16). The highest-order viscous term is retained in order to start the 
calculations off, as at the time the boundary-layer calculations commence, all 
perturbations are assumed zero. 
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If calculations also include rising bubbles, for a cubic spline to be fitted to A the value 
of aA/as is also required at the top, on the axis of symmetry. Similar to (A 2) in the 
Appendix, it can be shown that 

Also, from (A 2) 

d aA aAdh d ds + ---- 
as a ("") dt - dt( as) as ds dt (dh) 

(4.20) 

(4.21) 

Combining (4.20), (4.21) and (4.5) and taking the limit as s+O, gives an equation for 
the time evolution of aA/as on the axis above a bubble, 

The condition on the slope of A at r = R,,, is found by a consideration of the limiting 
form of (4.5). Making use of (3.6) and (3.8), we see that A = O(l/r4) as r +  a. 

When the walls of the bubble cavity start to move inwards immediately before 
forming the jet, the vorticity created in the thin boundary layer is advected into the 
bulk of the liquid. The assumption of a thin boundary layer is violated once this 
separation takes place, causing the boundary-layer calculations using the method 
described above to break down. However, we can follow this advection of vorticity 
from the boundary layer 

Since o = I&, (4.23) can 

We assume that the layer 

using the vorticity equation, 

D(u)o d o  
Dt dt 

x - = o - V v  + Re-lV2@. 

be written as 

(4.23) 

(4.24) 

is initially thin enough so that derivatives of the pertubation 
velocity across it are larger than those taken along it, thus the initial vorticity may be 
approximated by 

(4.25) 

As the boundary layer separates, viscous terms will become less important, and we may 
assume that the vorticity development can be described by pure advection together 
with changes brought about by the stretching of vortex rings moving towards or away 
from the central axis. Hence by following material points, in the sense defined by the 
potential flow field, we can calculate an estimate of the vorticity evolution in both the 
upward and downward jets. We examine a posteriori our assumption that the self- 
induced motion of the vorticity can be neglected when compared to the advection due 
to the irrotational flow. 

4.2. Repositioning and smoothing 
In order to maintain a good resolution of surfaces, it is necessary to reposition points 
periodically. Points on bubbles are moved so that they are once again evenly spaced. 
Points on the free surface are spaced so that the arclengths follow a nonlinear 
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FIGURE 4(a). For caption see p. 455. 

distribution similar to that in equation (3.5). Regular smoothing of the surface and 
potentials with the Longuet-Higgins & Cokelet (1976) smoothing formula is also 
required in order to prevent high-frequency surface oscillations. 

As was mentioned in $4.1, finite-difference points in the boundary layer are 
repositioned with nodes on the surfaces. Since these points must always lie on normals 
to the surface, this can be done as follows. The standard repositioning of the surface 
nodes decides between which two old nodes a new node is to be placed. Values of U, 
on the new boundary-layer normal are chosen at the same height 7 as those on the old 
normal immediately to its left by a simple linear interpolation scheme, based on the 
assumption that the surface curvature will not change much from one node to the next, 
so that the three normals meet at a single point. Hence changes in U, at nodes 
equidistant from the surface on the normals will be in the same proportion as the 
arclengths along the surface. To do this the value of U, on the normal immediately to 
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FIGURE 4(b). For caption see facing page. 

the right of the new normal is also calculated at the same height by quadratic 
interpolation. This is repeated for all nodes on each normal. 

5. Results and discussion 
The methods described in the previous sections allow numerical calculation of 

bubble and interface shapes at various times during bubble rise or burst. A number of 
interesting cases are shown in figure 4(a-c) for different bubble sizes. It is clear that 
smaller bubbles, as their internal pressures are higher, burst from lower in the fluid and 
thus release a proportionately greater amount of energy in the form of the high-speed 
liquid jets seen experimentally (see for example Kientzler et al. 1954; MacIntyre 1972). 
The larger bubbles form proportionately wider jets as has been observed in Garner 
et al. (1954). The velocity of the central node on the free surface increases sharply as the 
jet is formed. In figure 4(a, b) there is a noticeable drop in velocity immediately before 
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corresponding to equivalent radii of 0.075, 0.2 and 0.3 cm respectively. 

the jet begins to rise. This can be seen more clearly in a magnification of the motion 
of figure 4(u), shown in figure 5. As the cavity walls straighten early on in the burst, 
the bottom rises slowly and flattens off, creating a ring of high curvature at the 'corner' 
between the near vertical wall and the horizontal base. The effect of surface tension 
then pulls this ring inwards. Thus the liquid - which flows from the region of opposite 
curvature near the highest point of the surface - now flows predominantly towards this 
ring rather than towards the very lowest part of the cavity. The node on the axis of 
symmetry is then observed to slow down. As the walls close in further, an axisymmetric 
cusp almost occurs and the liquid is forced upwards. This high surface curvature and 
the subsequent large velocities and accelerations suggest possible physical similarities 
between jet formation and the classes of free-surface flows considered by Longuet- 
Higgins (1 980, 1983). 
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FIGURE 6. A spherical bubble of the same volume as that in figure 4(c), burst from a position just 
below a flat free surface. The bursting motion is not greatly affected by the amount of free surface 
removed in order to rejoin to the bubble. Eo = 4.77, y1 = 1.1, a = 0.3 cm. 

r Time 

Bubble equivalent radius (cm) 0.05 0.075t 0.1 0.2t 0.25 0.3t 
Jet speed ( m a )  (cm s-') 640 520 410 190 140 94 
Drop radius (cm) 0.012 0.017 0.023 0.061 - - 
Drop release time (approx) (ms) 1.8 3.4 5.2 1.43 1.53 1.73 

TABLE 1. Dimensional data from calculations 
t See figure 4. 
3 Time until maximum jet height. 
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FIGURE 7. Calculated motion of the 0.75 mm bubble (solid lines) compared with the experiments of 
Kientzler et al. (1954) (dashed lines). The exact shapes of the experimental bubble craters near to 
where they join the free surface are not clear from the photographs in the paper of Kientzler et al. 
(1954) and this may be the cause of some discrepancy. The exposure time for the frames in the 
photographic study was reckoned by Kientzler et al. to be about 65 ps. 

The jet accelerates for only a short time, and then slows as it rises. For the smallest 
bubble, figure 4(a), the speed of the uppermost point increases very slightly, once more 
due to the thinning of the jet and the breaking off of a drop, at which point the 
calculations must stop. As velocities scale with respect to (a/pu)i, it is clear that smaller 
bubbles result in faster jets (see table 1). 

Compare these calculations with figure 6, where a 3 mm radius bubble is burst from 
a completely submerged position. Here, unlike in figure 4(c), a high-speed jet is formed. 
Owing to the greater influence of gravity, this jet is wider and not as fast as those 
produced by smaller bubbles, which burst with similar initial configurations. 

The calculated free-surface shapes before jet production are repeated for the 
0.75 mm bubble in figure 7 in order to show a comparison with the experimental results 
of Kientzler et al. (1954). Slight differences in the initial motion can be attributed to the 
fact that the experimental profile starts off slightly lower in the fluid. The jet produced 
in the experiments, although of speed comparable to that predicted here, is highly 
asymmetric and breaks up significantly earlier than calculated, so that the comparison 
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for later times is not so good. This is not shown, owing to the difficulty of identifying 
the surface position of the lower part of the jet which, in the photographs of Kientzler 
et al. (1954), is obscured by the surrounding bubble crater. In addition to the inevitable 
neglect of asymmetric instabilities, node repositioning and smoothing may cause some 
discrepancy in the jet shapes. Enhancements to the numerical procedure, to the surface 
representation or so that smoothing is no longer required, may improve this. The effect 
of a boundary layer on the jet is discussed below. 

The existence of a downward jet in the calculation is confirmed by placing a second 
bubble directly below the bursting bubble. It can be seen in figure 8 that the top of the 
second bubble is firstly pulled up by the efect of the low pressure around the highly 
curved bursting bubble cavity. Then, just as the jet forms, the top of the lower bubble 
develops a dimple. The lower bubble then begins to rise and soon starts to form a jet 
from below, characteristic of bubbles of this size. The jet velocity for the bursting 
bubble reaches a slightly higher peak, but is otherwise largely unaffected by the 
following bubble. Likewise, the centroid velocity of the following bubble, indicated by 
the lower trace of the velocity plot for figure 8, undergoes a small dip as the jet of the 
bursting bubble forms. 
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FIGURE 10. Starting the boundary-layer calculations just after the jet forms shows the dissipative 
effect of viscosity, resulting in a slightly shorter jet compared to the purely potential flow case. 

Using the boundary-layer calculations of $4, we find that the surface shapes, up until 
jet formation, are indistinguishable from those in the figures above. Unfortunately 
boundary-layer separation over a significant region occurs just before the jet forms 
(figure 9) so that the boundary-layer calculation must stop. The dissipative effect of 
viscosity on the jet can be seen by allowing a boundary layer to develop just after the 
jet has begun to form (at t = 0.5 for the 0.75 mm case). Calculations run as far as the 
time when the droplet at the end of the jet begins to develop. Figure 10 shows the 
resulting jet to be very slightly shorter than in the corresponding potential flow case at 
the same time. 
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The pressure in the fluid is calculated using the Bernoulli formula (2.2) together with 
the boundary-layer modification (4.7). To improve resolution near to the surface, 
where the boundary integral formula for the potential in the fluid is badly behaved, the 
pressure there is given by 

(5.1) 
2 

Re p* -pm = dk,/dt + K, - K +iy,,, Eo + --ii.e--ii, 

where e = ejj is the rate-of-strain tensor. Since the fluid is incompressible, 

(5.2) 

As cells are more likely to be ripped apart by straining flows than by a strong velocity 
gradient in one particular direction, when damage can be reduced by the cells rotating 
with the fluid, the energy dissipation rate, @ = 2,ueij e,, gives a good indication of the 
stresses placed on a cell in the fluid, thereby providing a possible measure of the 
damaging nature of a particular flow field. 

In the fluid, outside the boundary layer, the non-zero rates of strain are given by 

At the surface, by virtue of the stress-free boundary condition, the rates of strain are 

with all off-diagonal terms zero. By exploiting incompressibility, the corresponding 
dimensional energy dissipation rate at the surface may be written as 

@ = 4 , ~ ( e : ~  + e,", + enn e,,). (5.5) 

The pressures above atmospheric pressure (dyn ern-') for the 0.75 mm and 3 mm 
bubbles are plotted in figures 11 (a) and 11 (b) respectively (plate 1). For the smaller 
bubble, the initial motion is driven by the very high pressure around the rim of the 
cavity. This is less dramatic in the 3 mm case where gravity also plays a significant role 
in shaping the motion. In the first two frames of figure 11 (a), the low pressure around 
the underside of the bubble intensifies as the wave of fluid that was initially just below 
the neck of the bubble crater moves down the bubble, increasing in curvature. As the 
walls of the cavity collapse inwards a ring of high pressure can be seen to develop. This 
then moves downwards until it finally becomes a point of high pressure directly 
beneath the bubble (at t z 0.46). This pushes fluid upward and downward to produce 
the jets evident in previous figures. The high pressure remains during the early stages 
of jet formation (final frame of 11 a), further accelerating fluid into the jet. The pressure 
in the jet is relatively high owing to surface tension which acts so as to thin it until one 
or more drops break off. For the large bubble, the pressure rises only slightly as the 
much smaller jet is about to form. This can be seen through the slight upward bending 
of the contour lines of the highly visible hydrostatic pressure. 

Figure 12 shows that the largest maximum pressures occur for the smallest bubbles. 



Journal of Fluid Mechanics, kl. 254 Plate 1 

FIGURE 11. (a, b) The pressure above ambient pressure (lo3 and 10’ dyne ern-?) for the 0.75 mm bubble of 
figure 4(a) and the 3 mm bubble of figure 4(c), respectively. (c, d) The corresponding energy dissipation 
rates in units of loJ and lo3 dynes cm-’s-’. 

BOULTON-STONE & BLAKE (Facing p.  460) 
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FIGURE 15. The vorticity distribution (lo's-') generated in the boundary layer and subsequently advected in- 
to the fluid by the upward and downward jets. The case of the 0.75 mm bubble of figure 4(u) is shown here. 

BOULTON - ST~NE & BLAKE 
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FIGURE 12. Maximum pressures produced throughout the bursting process 
plotted against bubble radius. 

This was expected from the experimental studies on cell damage. However, it seems 
that the pressures themselves are insufficient to kill cells, being equivalent to only a few 
centimetres of water. 

Figures 11 (c) and 11 ( d )  (plate 1) show the corresponding energy dissipation rates 
(dyn cm-2 s-l) for the same times as above. It is seen that the peak energy dissipation 
rate moves round with the wave of fluid, where the pressure is low, increasing in 
magnitude until the jet forms. MacIntyre (1972) indicated that this ripple was a site 
where high rates of strain were likely. Indeed, high rates of strain are to be expected 
when the jet is forming owing to the extensional flow around a stagnation point near 
to the pressure maximum. Fluid must be drawn in from the sides towards the axis of 
symmetry and then rapidly accelerated upwards or downwards into one of the jets. 
Such flows are potentially lethal to cells, which may be stretched and ruptured by the 
high strain rates. Figure 13 shows that the maximum energy dissipation rates, which 
occur beneath the bubble immediately before jet formation, increase rapidly with 
decrease in bubble radius. Again, this is in keeping with the finding that cell damage 
is greater for smaller bubbles. There is no complete agreement on the strength of cells. 
Orton & Wang (1990) suggest that stresses of the order of lo3 dyn cmP are sufficient 
to cause death, whereas Zhang et al. (1991) give cell bursting pressures of about 
5 x lo4 dyn cm-2. The calculated maximum energy dissipation rates for the smallest 
bubbles are equivalent to stresses of the order of lo4 dyn cm+, indicating that bubble 
bursting can create an hydrodynamic environment which may be deadly for cells. 

The boundary layer makes almost no difference to the calculated values of energy 
dissipation rate. This is mainly because the effect of the boundary layer in ensuring zero 
tangential stress at the surface is exploited even when no boundary layer is being used 
in the calculations, in order to improve resolution in the contouring program. 

It was proposed by Orton & Wang (1990) that cell death rates are closely related to 
the rate of liquid entrainment from bursting bubbles. As it seems reasonable to assume 
that the underlying cause of cell damage must be some form of hydrodynamic stress, 
there should be a corresponding relationship between this stress and the entrainment 
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FIGURE 13. Maximum energy dissipation rates produced throughout the bursting process, plotted 
against bubble radius. The logarithmic scale indicates an exponential dependence of maximum stress 
on bubble radius for larger bubbles. The slight drop in the data point for the smallest bubble as 
compared to the next smallest may be because of the difficulty in locating the exact place and time 
of the peak, due to large spatial and temporal gradients beneath the forming jet. 
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FIGURE 14. Non-dimensional jet drop volumes against bubble radius: calculated (solid circles and 
line), compared with the experimental values of Garner et al. (1954) (open circles). 

rate. To investigate this, we calculated estimates for the volume of the first drop 
released. The calculated entrainment rates are compared with the jet drop sizes of 
Garner et al. (1954) in figure 14. Note that only the size of the first released drop is 
calculated and no allowance is made for the volume of fluid entrained by the rupture 
of the film above the bubble, which is significant for only the largest bubbles (see 
Garner et al. 1954). The droplet sizes for the smaller bubbles agree to an order of 
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magnitude. Differences are partly because of the difficulty in predicting the precise time 
and place of disengagement, but are also due to discrepancies in the jet formation itself 
pointed out above. Smoothing and repositioning of nodal points in the jets may 
smooth out small-scale instabilities that would otherwise affect drop formation. An 
interesting point to note is that the calculated entrainment rates seem to be at a 
maximum for bubles of radii around 2 mm. Even though the bubble of figure 4(b) does 
not form a long, thin jet, the relative volume of the drop released is much larger than 
that of the three smallest bubbles studied. When this calculation was allowed to 
continue past the point where the drop almost disengaged, the code did not break 
down, but the jet fell back into the fluid. In reality, it would be surely be pinched off 
by surface tension, before falling back into the fluid. We can therefore conclude that 
2 mm must be close to the bubble radius beyond which no drop is released. Garner 
et al. (1954) suggest that this cut-off point for jet drop formation is at about 2.5 mm. The 
velocity plot of figure 4(b)  shows that, at the time of droplet formation, the top of the 
jet is moving slowly downwards. If this is the case, such large droplets near to the cut- 
off point may not have been identified as such by the experimenters whose methods 
hinged on observations and detection of drops thrown some distance above the jet. 
That larger droplets are formed for larger bubbles is noted by Garner et a!. (1954), but 
the sizes are still small in comparison with our calculations. 

The approximate vorticity distribution (s-l) is shown at three stages of jet formation 
in figure 15 (plate 2). This vorticity was created in a boundary layer by the initial 
collapse of the crater for the 0.75 mm bubble and shed prior to jet formation. Here, it 
is shown being advected into the bulk of the fluid by the formation of the jets. The self- 
induced velocity of a hollow vortex ring around which there is a circulation Tis  (Hicks 
1884) 

4xR 

where R is the ring radius and b is the core radius. If we assume that the vorticity in 
a ring is approximately constant so that, ignoring curvature effects of the ring, the 
vorticity is related to the circulation by r = xb%. From figure 15, typical parameter 
values are w = 2 x 102s-l, b = 2.5 x cm giving V x  1.5 cm s-l. 
The jet speed is typically of the order of 150 cm s-l, and the speed of the lower blobs 
of vorticity can be measured to be about 50 cm s-l, thus confirming the assumption 
that we could ignore the self-induced velocity. 

The sign of the vorticity in the first frame of figure 15 can be explained in terms of 
the dissipative effect of viscosity, which reduces tangential velocity gradients at surfaces 
to zero. As the vorticity is dominated by aU,/an, it will be negative in sign when &,/an 
is positive. This was verified by examining the values of au,/an at time t = 0.40. (In fact 
au,/as+ K%, was used as it is easier to calculate accurately, owing to the singular 
nature of the boundary integral formulation. See (A 6 ) )  In this first frame, the sign of 
the vorticity was observed to be generally opposite to that of the tangential velocity, 
u,. Bearing in mind that normals are directed out of the fluid, this implies that at this 
time the tangential flow speed at the surface is generally faster than nearby in the bulk 
of the fluid. 

It should be emphasized that although the vorticity carried into the jet is positive, 
large negative curvatures and tangential velocities near the top of the fully developed 
jet ensure that the tangential speed near to the surface is greater than at the surface. 
There is consequently a net negative vorticity at the surface due to additional vorticity 
created in the boundary layer of the jet which is not accounted for in these figures. As 

cm, r = 5 x 
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the jet begins to form, and in the lower parts of the jet of the final frame, the tangential 
velocity of the surface is higher so that the direction of fluid rotation as depicted is 
correct. As a droplet begins to develop, a region of positive curvature is formed. Thus 
negative surface values of au,/an and positive vorticities are found in this region. If we 
move further down the jet, the thinning becomes less noticeable and a further change 
of the sign of the surface vorticity takes place. More sign changes are observed to occur 
around the base of the jet. 

The magnitude of the vorticity suggests that viscous effects make only a very small 
contribution to the stresses in the downward jet region. 

6. Conclusion 
We have developed a numerical model of bursting bubbles from the time immediately 

after the rupturing of the film until jet and drop formation. The formation of a jet can 
be seen as the inevitable result of the collapse towards the axis of symmetry of a bubble 
crater so that fluid is forced upwards. High-speed jets do not feature in large-bubble 
(over about 2.5 mm radius) bursts where there is insufficient potential energy in the 
initial configuration. 

High energy dissipation rates prior to jet rise have been identified as an indicator of 
possible cell damage. The maximum values of energy dissipation rates are reduced 
approximately exponentially as bubble radius is increased. The full implications of this 
can only become apparent when we know more details of the likely position of cells in 
relation to regions of high rates of strain, both around the crater as it collapses and 
below the bubble as the jets form. The survivability of specific flow environments also 
needs to be studied in more depth before any concrete conclusions are drawn in this 
respect. 

A technique for including viscous forces in a stress-free boundary layer, based on the 
method of Lundgren & Mansour (1988), is introduced. The only noticeable effect of the 
boundary layer on the motion is on the jet, which is slowed slightly due to viscous 
dissipation. The onset of boundary-layer separation gives initial conditions for an 
estimate of the vorticity development in the upward and downward jets. This suggests 
only a small contribution to the total stress placed on cells. 

The authors are grateful to Dr Adam Kucera and Dr John Best for the use of their 
code as a basis for this work and to Professor Alvin Nienow, Mr Nick Emery and Dr 
Colin Thomas of the School of Chemical Engineering at the University of Birmingham. 
J. M. B . 4 .  would also like to thank SERC for financial support. 

Appendix 
We may easily show that a material curve that is locally normal to a stress-free 

surface will remain so. First, consider a general material curve indexed by the 
Lagrangian parameter A. If the unit tangent to the curve is m then 

As both derivatives are taken in a Lagrangian sense, they may be interchanged to give 

(A 2) 
dh d (ds ax) - drfi A dh d (ds) 
ds dt dh as dt ds dt dh ' 

Ij2.v~ = _ _  _ _  - -+m-- - 
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Thus if A is chosen to be the normal or tangent to the surface, then 

By using (4.2) and adding the equations of (A 3), we see that for a stress-free surface, 

dii-t" 
~ = 0. dt 

In order to calculate normal derivatives of the tangential velocity, ut, we use the fact 
that u is irrotational to rewrite it in terms of tangential derivatives of the normal 
velocity, u,, which can be calculated more accurately. As the tangent vector is fixed 
with respect to small changes in the normal direction, 

Since u is irrotational, the rank-2 tensor Vu is symmetric, so that the right-hand side 
of (A 5 )  can be reordered, giving 
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